READY, SET, GO!
Name
Period
Date

READY

Topic: Rotational symmetry
Hubcaps have rotational symmetry. That means that a hubcap does not have to turn a full circle to appear the same. For instance, a hubcap with this pattern,
 will look the same every $1 / 4$ turn. It is said to have 90 orotational symmetry because for each quarter turn it rotates 90°.

State the rotational symmetry for the following hubcaps. Focus your answer on just the spokes, not the center design.(Answers will be in degrees.

SET

Topic: Area formulas for triangles
Area of an Oblique Triangle: The area of any triangle is one-half the product of the lengths of two sides times the sine of their included angle. \quad Area $=\frac{1}{2} b c \sin A=\frac{1}{2} a b \sin C=\frac{1}{2} a b \sin B$

Need help? Visit www.rsgsupport.org

Find the area of the triangle having the indicated sides and angle.
16. $C=84.5^{\circ}, \quad a=32, \quad b=40$
17. $A=29 \circ, \quad b=49, \quad c=50$
18. $B=72.5^{\circ}, \quad a=105, c=64$
19. $C=31^{\circ}, \quad a=15, \quad b=14$
20. $A=42^{\circ}, \quad b=25, \quad c=12$
21. $B=85^{\circ}, \quad a=15, \quad c=12$

Another formula for the area of a triangle can be derived from the Law of Sines.
Area $=\frac{c^{2} \sin A \sin B}{2 \sin C}$

Use this formula to find the area of the triangles.

Perhaps you used the Law of Cosines to establish the following formula for the area of a triangle. The formula was known as early as circa 100 B.C. and is attributed to the Greek mathematician, Heron. Heron's Area Formula: Given any triangle with sides of lengths a, b, and c, the area of the triangle is:

Area $=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{(a+b+c)}{2}$.

Need help? Visit www.rsgsupport.org

Find the area of the triangle having the indicated sides.
24. $a=11, b=14, c=20$
25. $a=12, b=5, \mathrm{c}=9$
26. $a=12.32, b=8.46, c=15.05$
27. $a=5, b=7, c=10$

GO

Topic: Distinguishing between the law of sines and the law of cosines
Indicate whether you would use the Law of Sines or the Law of Cosines to solve the triangles. Do not solve.
28.

29.

30.

31.

Need help? Visit www.rsgsupport.org
© 2018 Mathematics Vision Project All Rights Reserved for the Additions and Enhancements mathematicsvisionproject.org

