READY

Topic: Rotational symmetry

Hubcaps have *rotational symmetry*. That means that a hubcap does not have to turn a full circle to appear the same. For instance, a hubcap with this pattern, will look the same every ¹/₄ turn. It is said to have 90^o *rotational symmetry* because for each quarter turn it rotates 90^o. **State the** *rotational symmetry* **for the following hubcaps. Focus your answer on just the spokes, not the center design.**(Answers will be in degrees.

SET

Topic: Area formulas for triangles

Area of an Oblique Triangle: The area of **any** triangle is one-half the product of the lengths of two sides times the sine of their included angle. $Area = \frac{1}{2}bc \sin A = \frac{1}{2}ab \sin C = \frac{1}{2}ab \sin B$

Need help? Visit www.rsgsupport.org

© 2018 Mathematics Vision Project All Rights Reserved for the Additions and Enhancements mathematicsvisionproject.org

Find the area of the triangle having the indicated sides and angle.

16.
$$C = 84.5^{\circ}$$
, $a = 32$, $b = 40$
17. $A = 29^{\circ}$, $b = 49$, $c = 50$

18. $B = 72.5^{\circ}$, $a = 105$, $c = 64$
19. $C = 31^{\circ}$, $a = 15$, $b = 14$

20. $A = 42^{\circ}$, $b = 25$, $c = 12$
21. $B = 85^{\circ}$, $a = 15$, $c = 12$

Another formula for the area of a triangle can be derived from the *Law of Sines*.

$$Area = \frac{c^2 \sin A \sin B}{2 \sin C}$$

Use this formula to find the area of the triangles.

Perhaps you used the *Law of Cosines* to establish the following formula for the area of a triangle. The formula was known as early as circa 100 B.C. and is attributed to the Greek mathematician, Heron. *Heron's Area Formula:* Given any triangle with sides of lengths *a*, *b*, and *c*, the area of the triangle is:

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$
 where $s = \frac{(a+b+c)}{2}$.

Need help? Visit www.rsgsupport.org

© 2018 Mathematics Vision Project All Rights Reserved for the Additions and Enhancements mathematicsvisionproject.org

Find the area of the triangle having the indicated sides.

24. $a = 11$, $b = 14$, $c = 20$	25. $a = 12, b = 5, c = 9$
26. $a = 12.32$. $b = 8.46$. $c = 15.05$	27. $a = 5$. $b = 7$. $c = 10$

GO

Topic: Distinguishing between the *law of sines* and the *law of cosines*

Indicate whether you would use the *Law of Sines* or the *Law of Cosines* to solve the triangles. Do not solve.

